Monday, April 15, 2013

Vector graphics

Let's talk about VECTOR

Vector graphics is the use of geometrical primitives such as points, lines, curves, and shapes or polygon(s), which are all based on mathematical expressions, to represent images in computer graphics. "Vector", in this context, implies more than a straight line.
Vector graphics are based on vectors (also called paths, or strokes) which lead through locations called control points. Each of these points has a definite position on the x and y axes of the work plan. Each point, as well, is a variety of database, including the location of the point in the work space and the direction of the vector (which is what defines the direction of the track). Each track can be assigned a color, a shape, a thickness and also a fill. This does not affect the size of the files in a substantial way because all information resides in the structure; it describes how to draw the vector.

Applications

The earliest 2D computer graphics were all vector graphics.
One of the first uses of vector graphic displays was the US SAGE air defense system. Vector graphics systems were only retired from U.S. en route air traffic control in 1999, and are likely still in use in military and specialised systems. Vector graphics were also used on the TX-2 at the MIT Lincoln Laboratory by computer graphics pioneer Ivan Sutherland to run his program Sketchpad in 1963.
Subsequent vector graphics systems, most of which iterated through dynamically modifiable stored lists of drawing instructions, include the IBM 2250, Imlac PDS-1, and DEC GT40. There was a home gaming system that used vector graphics called Vectrex as well as various arcade games like Asteroids and Space Wars. Storage scope displays, such as the Tektronix 4014, could display vector images but not modify them without first erasing the display.
Modern vector graphics displays can sometimes be found at laser light shows, where two fast-moving X-Y mirrors position the beam to rapidly draw shapes and text as straight and curved strokes on a screen.
Vector graphics can be created in form using a pen plotter, a special type of printer that uses a series of ballpoint and/or felt-tip pens on a servo-driven mount that moves horizontally across the paper, with the plotter moving the paper back and forth through its paper path for vertical movement. Although a typical plot might easily require a few thousand paper motions, back and forth, the paper doesn't slip. In a tiny roll-fed plotter made by Alps in Japan, teeth on thin sprockets indented the paper near its edges on the first pass, and maintained registration on subsequent passes.
Some Hewlett-Packard pen plotters had two-axis pen carriers and stationary paper (plot size was limited). However, the moving-paper H-P plotters had grit wheels (akin to machine-shop grinding wheels) which, on the first pass, indented the paper surface, and collectively maintained registration.
Present-day vector graphic files such as engineering drawings are typically printed as bitmaps, after vector-to-raster conversion.
The term "vector graphics" is mainly used today in the context of two-dimensional computer graphics. It is one of several modes an artist can use to create an image on a raster display. Other modes include text, multimedia, and 3D rendering. Virtually all modern 3D rendering is done using extensions of 2D vector graphics techniques. Plotters used in technical drawing still draw vectors directly to paper.

Typical primitive objects

Any particular vector file format supports only some kinds of primitive objects. Nearly all vector file formats support simple and fast-rendering primitive objects:
Most vector file formats support
A few vector file formats support more complex objects as primitives:
If an image stored in one vector file format is converted to another file format that supports all the primitive objects used in that particular image, then the conversion can be lossless.

Vector operations

Vector graphics editors typically allow rotation, movement (without rotation), mirroring, stretching, skewing, affine transformations, changing of z-order (loosely, what's in front of what) and combination of primitives into more complex objects.
More sophisticated transformations include set operations on closed shapes (union, difference, intersection, etc.).
Vector graphics are ideal for simple or composite drawings that need to be device-independent, or do not need to achieve photo-realism. For example, the PostScript and PDF page description languages use a vector graphics model.

Printing

Vector art is ideal for printing. Since the art is made from a series of mathematical curves, it will print very crisply even when resized. For instance, one can print a vector logo on a small sheet of copy paper, and then enlarge the same vector logo to billboard size and keep the same crisp quality. A low-resolution raster graphic would blur or pixelate excessively if it were enlarged from business card size to billboard size. (The precise resolution of a raster graphic necessary for high-quality results depends on the viewing distance; e.g., a billboard may still appear to be of high quality even at low resolution if the viewing distance is large enough.)
If we regard typographic characters as images, then the same considerations that we have made for graphics apply even to composition of written text for printing (typesetting). Older character sets were stored as bitmaps. Therefore, to achieve maximum print quality they had to be used at a given resolution only; these font formats are said to be non-scalable. High quality typography is nowadays based on character drawings (fonts) which are typically stored as vector graphics, and as such are scalable to any size. Examples of these vector formats for characters are Postscript fonts and TrueType fonts.

Vector illustration

Vector illustration is a popular technique of many digital illustrators worldwide. Some of the greatest internationally acclaimed artists in the field are Catalina Estrada, Petra Stefankova, Nathan Jurevicius, J. Otto Seibold, Matthew Inman, Leo Blanchette and others.

No comments:

Post a Comment